Solution to "Paper" Homework #4

Section 2.7 - Prob 51 Let us use the definition of derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{|x+h-6| - |x-6|}{h}$$

$$f'(6) = \lim_{h \to 0} \frac{|6+h-6| - |6-6|}{h}$$

=
$$\lim_{h \to 0} \frac{|h|}{h}$$

Use the definition of absolute function:

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

So:

$$\frac{|h|}{h} = \begin{cases} \frac{h}{h} = 1 & \text{if } h > 0\\ \frac{-h}{h} = -1 & \text{if } h < 0 \end{cases}$$

Hence:

$$\lim_{h \to 0^{-}} \frac{|h|}{h} = -1 \quad \text{and} \quad \lim_{h \to 0^{+}} \frac{|h|}{h} = 1$$

So: $\lim_{h\to 0} \frac{|h|}{h}$ does not exist; thus f(x) is not differentiable at 6. Section 3.1 - Prob 2

(a)

(b) $f(x) = e^x$ is an exponential function. $g(x) = x^e$ is a power function. We have:

 $f'(x) = e^x$ but $g'(x) = e x^{e-1}$

(c) f(x) grows faster when x is large.

Section 3.2 - Prob 51 Compute the derivative $f'(x) = e^x(x^3 + 3x^2) = e^x x^2(x+3)$. f(x) is increasing if f'(x) > 0, and since $e^x > 0$ and $x^2 \ge 0$, we can conclude that f(x) is increasing when x + 3 > 0 and $x \ne 0$. So the interval we are looking for is $I = (-3, 0) \cup (0, +\infty)$.

Section 3.2 - Prob 52 Compute the second derivative: $f''(x) = (x^2 + 4x + 2)e^x$. f(x) concaves downward when f''(x) < 0 which happens when $x^2 + 4x + 2 < 0$ (since $e^x > 0$). $x^2 + 4x + 2 = 0$ has two roots: $x_1 = -2 - \sqrt{2}$ and $x_2 = -2 + \sqrt{2}$; so, by using a sign test or just looking at the graph of the parabolic function $x^2 + 4x + 2$, we conclude that $x^2 + 4x + 2 < 0$ when $-2 - \sqrt{2} < x < -2 + \sqrt{2}$.

Section 3.3 - Prob 34 Compute $f''(x) = -2(\sec x)^2 \tan(x)$. f concaves downward when f'' < 0, so $\tan(x) > 0$ which means $0 \le x < \frac{\pi}{2}$.