Solution to "Paper" Homework #7

Section 4.3 - Prob 16

$$f(x) = \sqrt{x}e^{-x}$$

Note: the domain of f(x) is $(0, +\infty)$.

(a) Since whether the function increases or decreases depends entirely on the sign of its derivative, so we compute:

$$f'(x) = e^{-x} \left(\frac{1}{2\sqrt{x}} - \sqrt{x}\right) = e^{-x} \frac{1 - 2x}{2\sqrt{x}}.$$

Notice that the result has been simplified into a fraction form since we are interested in finding the critical values (those that make f'(x) = 0 or DNE). Now, find the critical values:

- f'(x) = 0 when x = 1/2.
- f'(x) is undefined (or does not exist) at x = 0.

So we have two critical values: x = 0 and x = 1/2. Now, perform the sign test on f'(x). Notice that since $e^{-x} > 0$ and $2\sqrt{x} > 0$ on the domain of f(x), the sign of f'(x) only depends on the sign of 1 - 2x.

$$\frac{x \mid (0, 1/2) \mid (1/2, +\infty)}{\text{sign of } f'(x) \mid + -}$$
Conclusion on $f(x) \mid \nearrow \mid \searrow$
So the function \nearrow on $(0, 1/2)$; and \searrow on $(1/2, +\infty)$.

- (b) From the sign test table, we can see clearly that since 1/2 is in the domain, the function has a local maximum of $f(1/2) = \sqrt{1/2} e^{-1/2}$ at x = 1/2.
- (c) Whether the function concaves upward or downward depends on the sign of its second derivative. So we have (after some long simplification):

$$f''(x) = e^{-x} \frac{4x^2 - 4x - 1}{4x^{3/2}}$$

Now find the values of x that make f''(x) either zero or undefined:

- f''(x) = 0 when $4x^2 4x 1 = 0$ which give two roots: $x_1 = \frac{-\sqrt{2}+1}{2}$ (disregarded since it is out of the domain) and $x_2 = \frac{\sqrt{2}+1}{2}$
- f''(x) = DNE when x = 0.

Now do the sign test for f''(x) as we did above:

Conclusion on $f(x) \parallel [1] \mid \bigcup$ So the *f* concaves downwards on $(0, \frac{\sqrt{2}+1}{2})$ and upwards on $(\frac{\sqrt{2}+1}{2}, +\infty)$. And since $\frac{\sqrt{2}+1}{2}$ is in the domain the point $(\frac{\sqrt{2}+1}{2}, f(\frac{\sqrt{2}+1}{2}))$ is the inflection point.

Section 4.3 - Prob 18

$$f(x) = \frac{x}{x^2 + 4}$$

Domain: $D = (-\infty, \infty)$

(a) First Derivative Test:

$$f'(x) = \frac{-x^2 + 4}{(x^2 + 4)^2}$$

Now, find the critical values. Since f'(x) is defined everywhere, we only need to find those that make it zero: f'(x) = 0 when x = -2 or x = +2. Perform the sign test: $x \parallel (-\infty -2) \parallel (-2, 2) \parallel (2, +\infty)$

x	$(-\infty, -2)$	(-2,2)	$(2, +\infty)$
sign of $f'(x)$	—	+	—
Conclusion on $f(x)$	\searrow	\nearrow	\searrow

Since both -2 and 2 are in the domain, the f(x) has a local min. of f(-2) = -1/4 at x = -2, and a local max. of f(2) = 1/4 at x = 2.

(b) Repeat the first steps above to find the critical values of f'(x). Now, compute the second derivative:

$$f''(x) = \frac{2x(x^2 - 12)}{(x^2 + 4)^3}$$

Evaluate:

- f''(-2) = 1/16 > 0 (local min.).
- f''(2) = -1/16 < 0 (local max.).

Make the same conclusions as above.

Section 4.3 - Prob 58

$$f(x) = e^{-x^2/(2\sigma^2)}$$

(a) As $x \to \pm \infty$, $-x^2/(2\sigma^2) \to -\infty$, so $f(x) \to 0$.

$$f'(x) = \frac{-x}{\sigma^2} e^{-x^2/(2\sigma^2)}$$

Do a sign test to conclude that f(x) increases on $(-\infty, 0)$ and decreases on $(0, +\infty)$, thus have a local maximum of f(0) = 1 at x = 0, which is also the absolute maximum in this case. Take the second derivative:

$$f''(x) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right) e^{-x^2/(2\sigma^2)}$$

You can conclude, after doing a sign test, that $(-\sigma, e^{-1/2})$ and $(\sigma, e^{-1/2})$ are inflection points.

(b) If we decrease σ , the curve will be more like of a bell shape (the "width" of the bell gets narrower and narrower) and vice versa.

Section 4.4 - Prob 8

$$f(x) = \frac{e^x}{x^2 - 9}$$

- 1. Domain: $D = (-\infty, -3) \cup (-3, 3) \cup (3, \infty)$.
- 2. x and y-intercepts:
 - f(0) = -1/9.
 - f(x) = 0 has no solution, so there is no x-intercept.
- 3. Symmetry: Since $f(-x) \neq f(x)$ or -f(x), there is no symmetry, neither with respect to the y-axis nor the origin.
- 4. Asymtotes:
 - $\lim_{x\to -3^-} f(x) = +\infty$.
 - $\lim_{x\to -3^+} f(x) = -\infty$.
 - $\lim_{x\to 3^-} f(x) = -\infty$.
 - $\lim_{x\to 3^+} f(x) = +\infty$.
 - $\lim_{x \to +\infty} \frac{e^x}{x^2 9} = {}^H \lim_{x \to +\infty} \frac{e^x}{2x} = {}^H \lim_{x \to +\infty} \frac{e^x}{2} = +\infty.$ • $\lim_{x \to -\infty} \frac{e^x}{x^2 - 9} = \lim_{x \to -\infty} \underbrace{e^x}_{\to 0} \cdot \underbrace{\frac{1}{x^2 - 9}}_{-\infty} = 0.$
- 5. Increasing/Decreasing: Compute the derivative:

$$f'(x) = \frac{e^x \cdot (x^2 - 2x - 9)}{(x^2 - 9)^2}$$

Perform a sign test (notice that the sign of f'(x) depends entirely on the sign of $x^2 - 2x - 9$, a quadratic function.

	x	$(-\infty, -3)$	$(-3, 1 - \sqrt{10})$	$(1-\sqrt{10},3)$	$(3, 1 + \sqrt{10})$	$(1+\sqrt{10},+\infty)$
f'	(x)	+	+	_	_	+
f	(x)	\nearrow	7	7	\searrow	\nearrow

- 6. Local Extrema (max./min.): Since $1 \sqrt{10}$ and $1 + \sqrt{10}$ are in the domain, we conclude (from the result above), that f(x) has a local max of $f(1-\sqrt{10})$ at $x=1-\sqrt{10}$ and a local min of $f(1 + \sqrt{10})$ at $x = 1 + \sqrt{10}$.
- 7. Concavity:

$$f''(x) = \frac{(x^4 - 4x^3 - 12x^2 + 36x + 99)e^x}{(x^2 - 9)^3}$$

Here you may use a graphing device (calculator or computer software) to realize that f''(x) has no zero and the factor $x^4 - 4x^3 - 12x^2 + 36x + 99 > 0$. So the sign of f''(x) entirely depends on the sign of $(x^2 - 9)^3$, which depends on the sign of $x^2 - 9$. So perform the sign test:

x	$(-\infty, -3)$	(-3,3)	$(3, +\infty)$
f''(x)	+	_	+
f(x)	U	\cap	U

8. Inflection Points: Since -3 and 3 are not in the domain of f(x), the function has no inflection point (even though the concavity changes accross these values).

Section 4.5 - Prob 64

$$\lim_{x \to \infty} \frac{\ln x}{x^p} =^H \lim_{x \to \infty} \frac{\frac{1}{x}}{p x^{p-1}} = \lim_{x \to \infty} \frac{1}{p x^p} = 0.$$