Name:

## Practice In–Class Exam 1

| Problem | Points | Score |  |
|---------|--------|-------|--|
| 1       | 20     |       |  |
| 2A      | 20     |       |  |
| 2B      | 20     |       |  |
| 3       | 20     |       |  |
| 4       | 20     |       |  |
| TOTAL   | 100    |       |  |

**Problem 1:** Let f and g be the functions defined by

$$f(x) = x^2 - 1$$
$$g(x) = \frac{1}{\sqrt{x}}$$

CIRCLE THE CORRECT ANSWER using the functions f and g defined above. (I) The domain of f is

(A) all positive real numbers (B) all real numbers bigger than 1 (C) all real numbers

(D) all real numbers different than 1

(E) None of the above.

(II) The value of f(1.1) is

(III) The value of g(a+h) is

(A) 
$$\sqrt{a+h}$$
 (B)  $\frac{1}{\sqrt{a+h}}$  (C)  $\sqrt{a}+h$ ; (D)  $\frac{1}{\sqrt{a+h}}$   
(E) None of the above.

(IV) The function f(g(x)) is

(A) 
$$\frac{1}{x-1}$$
 (B)  $\frac{1}{\sqrt{x^2-1}}$  (C)  $\frac{1}{x}-1$  (D)  $|x|-1$ 

(E) None of the above.

## Problem 2:

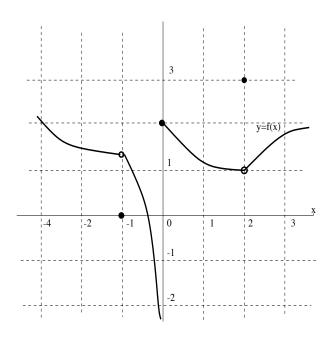


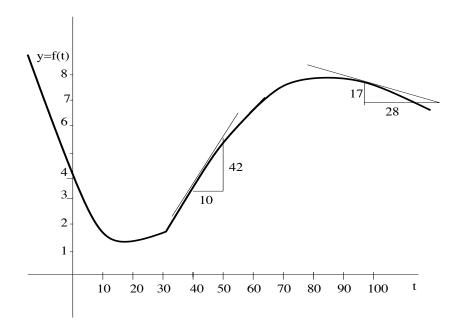

FIGURE 1

A) Use the graph of the given function in FIGURE 1 above to determine whether the limits exists or not.

- $\text{ii)} \lim_{x \to 0^+} f(x) =$  $\mathsf{i)} \lim_{x \to -1} f(x) =$  $\mathsf{D)}\lim_{x\to 2^-}f(x) =$
- $\text{iii)} \lim_{x \to -3} f(x) =$
- B) From the graph of function in FIGURE 1 above, complete the following table.

| x  | f(x) | Is f continuous at x? |  |  |  |
|----|------|-----------------------|--|--|--|
| 2  |      |                       |  |  |  |
| 0  |      |                       |  |  |  |
| -1 |      |                       |  |  |  |
| -3 |      |                       |  |  |  |

Problem 3. Find the indicated limits. A)  $\lim_{x\to 0} 2x^2 - 1 =$ 


**B)** 
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$

**C)**  $\lim_{x \to 2} 1.732 =$ 

**D**) Complete the table by computing f(x) at the given values of x and compute the corresponding limit.

| Х                             | 10 | 50 | 100 | 500 | 1000 |
|-------------------------------|----|----|-----|-----|------|
| $f(x) = \frac{x^2 + 1}{2x^2}$ |    |    |     |     |      |

$$\lim_{x \to \infty} \frac{x^2 + 1}{2x^2} =$$



## FIGURE 2

The graph in FIGURE 2 represents the position of a particle moving along a line given by the function y = f(t) where t is measured in seconds and y is measured in feet. Answer the following questions from the information in the graph.

A) Estimate the slope of the tangent line to the graph of y = f(t) at t = 20.

Answer:

**B)** By computing the slope of the tangent line, estimate the instantaneous rate of change of the position of the particle at t = 40 seconds.

Answer:

**C)** By computing the slope of the tangent line, estimate the instantaneous rate of change of the position of the particle at t = 95 seconds.

Answer:

**D)** At t = 95 seconds, is the particle moving in the direction of positive *y*-axis or negative *y*-axis. Why?



Answer: