Practice Kry MATH 121, Calculus I — Exam I (Spring 2014)

Name:	
KU ID No.:	
Lab Instructor:	

This exam has a total value of 100 points. There are 9 problems in total to be solved. The first seven are worth 10 points, the remaining two are worth 15 points. This is strictly a closed-book exam.

Score

# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	# 9	Total

1. [10 points] Find the exact value of $\lim_{x\to 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$.

$$\lim_{x\to 0} \frac{(\sqrt{3}+x-\sqrt{3})(\sqrt{3}+x+\sqrt{3})}{(\sqrt{3}+x+\sqrt{3})}$$

= lim (3+x) +5 x (\sigma 3+x + \sigma 3)

- 2. [10 points] Which of the following statements are true? (Since there may be more than one correct answer, determine all correct answers.)
 - (A) If $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists, then f is differentiable at a.
 - (B) If f is continuous at a, then f is differentiable at a.
 - If $\lim_{x\to a} f(x)$ exists, then f is differentiable at a.
 - (D) If f is differentiable at a, then $\lim_{x\to a} f(x) = f(a)$.

3. [10 points] Suppose that the function g satisfies the following inequality

$$2x \le g(x) \le x^4 - x^2 + 2$$

for all values of
$$x$$
. Find the value of $\lim_{x\to 1} g(x)$.

Squeete theorem

$$\lim_{x\to 1} 2x \leq g(x) \leq \lim_{x\to 1} x^4 - x^2 + 2$$

$$2 \leq 9(x) \leq 2$$

$$= \sum_{x \neq y} (x) \leq 2$$

Answer:

4. [10 points] For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

Answer: $\frac{2}{3}$

5. [10 points] For what values of x does the graph of $f(x) = x^3 - 3x + 1$ have a horizontal

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - 3(x+h) + i}{(x+h)^3 - 3(x+h) + i} - \frac{[x^3 - 3x + i]}{h}$$

$$= \lim_{h \to 0} \frac{h^3 + 3h^2 \times + 3x^2 h}{h} + \frac{x^3 - 3x - 3h}{h} + \frac{x^3 - 3x - 3h}{h}$$

Answer: ± 1 = $\lim_{h \to 0} \frac{h(h^2 + 3h \times + 3x^2 - 3)}{h} = 3x^2 - 3$

herizontal tangent means
$$F'(x)=0$$

 $3x^2-3=0 \Rightarrow x^2-1=0 \Rightarrow x=1$

6. [10 points] Find an equation of the tangent line to the curve $y = \sqrt{x}$ at the point

[10 points] Find an equation of the tangent line to the curve
$$y = \sqrt{x}$$
 at the $(1,1)$.

 $m = f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$

$$= \lim_{h \to 0} \frac{x+h}{h} = \lim_{h \to 0} \frac{x}{x} = \lim_{h \to 0} \frac{x}{x} = \lim_{h \to 0} \frac{x}{x} = \frac{1}{2} = \frac$$

Y= Y,=m (x-X,) Answer: Y-1=/2(X-1) Y=1/2 X-1/2 +1 7. [10 points] Find the value of $\lim_{x\to\infty} \frac{x+2}{\sqrt{9x^2+1}}$.

Answer:

8. [15 points] Let $f(t) = 5t - 9t^2$. Use the limit definition of the derivative to find f'(t).

Caution: Do <u>not</u> use the Power Rule to solve this problem.

$$f'(t) = \lim_{h \to 0} f(t+h) - f(t) = \lim_{h \to 0} [5(t+h) - 9(t+h)^{2}] - [5t - 9t^{2}]$$

$$= \lim_{h \to 0} 5t + 5h - 9t + 18t + 19h^{2} = 5t + 9t^{2}$$

$$= \lim_{h \to 0} \frac{1}{h} (5 + 18t + 9h) = \lim_{h \to 0} 5t - 18t - 9h$$

€ 5-18t

Answer:

- 9. [15 points] The position function of a particle is given by $s(t) = t^2 4.5t$, $t \ge 0$.
 - (a) When does the particle reach a velocity of 5 m/s?
 - (b) When does the particle have acceleration 0 m/s²? Explain the significance of this value of t.

$$2t - 4.5 = 5$$
 $2t = 9.5$
 $t = 4.75$

b)
$$a(t) = V'(t) = 2$$

the portical always has an acceleration of

Bonus. [5 points] On what interval(s) is the function $f(x) = x^3 e^x$ increasing?

$$f'(x) = 3x^{2}e^{x} + x^{3}e^{x} = e^{x}(3x^{2} + x^{3})$$

 $O = e^{x}(3x^{2} + x^{3})$
 $O = e^{x}$ $O = 3x^{2} + x^{3}$
 $f(x) = x^{2}(3+x)$
 $f(x) = x^{2}(3+x)$