$\begin{array}{c} \text{MATH 121, Calculus I} - \text{Exam III (Spring 2014)} \\ \text{(sample)} \end{array}$

This exam has a total value of 100 points. There are 9 problems in total to be solved. All but two are worth 10 points, the remaining two are worth 15 points. This is strictly a closed-book exam. Be sure to show all work.

Score

# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	# 9	Total

1. [15 points] A kite 100 ft above the ground moves horizontaly at a speed of 8 ft/s. At what rate is the angle between the string and the horizontal decreasing when 200 ft of string have been let out?

2. [10 points] If two resistors with resistance R_1 and R_2 are connected in parallel, then the total resistance R, measured in ohms (Ω) , is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

If R_1 and R_2 are increasing at rates of 0.3 Ω/s and 0.2 Ω/s , respectively, how fast is R changing when $R_1 = 80 \ \Omega$ and $R_2 = 100 \ \Omega$.

3. [10 points]Find the local and absolute maximum and minimum values of $f(x) = 12 + 4x - x^2$ on the interval [0, 5]

- 4. [10 points]Let f(t) be the temperature at time t where you live and suppose that at time t = 3 you feel uncomfortably hot. How do you feel about the given data in each case?
 - (a) f'(3) = 2, f''(3) = 4
 - (b) f'(3) = 2, f''(3) = -4
 - (c) f'(3) = -2, f''(3) = 4
 - (c) f'(3) = -2, f''(3) = -4

Answer:		
---------	--	--

5. [10 points] Evaluate the limit $\lim_{x \to 1} \frac{\ln x}{\sin \pi x}$

6. [15 points] A steel pipe is being carried down a hallway 9 ft wide. At the end of the hall there is a right-angled turn into a narrower hallway 6 ft wide. What is the length of the longest pipe that can be carried horizontally around the corner?

7. [10 points] A piece of wire 10m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is at a maximum?

Answer:

8. [10 points]Use newton's method to find a solution to $x^3 = 1 + x$.

9. [10 points] Find the antiderivative F of $f(x) = 5x^4 - 2x^5$ that satisfies F(0) = 4.

